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ABSTRACT

Spatial simulation algorithms are designed to
generate realizations of random functions and to
reproduce statistical characteristics of the random
function. In practice only a small number of
realizations are generated and hence the
characteristics of the realizations are more
important than those of the random function. Most
algorithms reproduce the statistical characteristics,
such as the covariance function, mean and
univariate distribution, only in an average sense. At
least second order stationarity is an implicit
assumption in using the algorithms. Empirical and
theoretical results for convergence are given for
several of the commonly used algorithms such as
LU, Sequential Gaussian and Turning Bands.
Simulated Annealing is an algorithm where each
realization reproduces the statistical properties with
large probability.

1.INTRODUCTION

The interpolation of irregularly spaced data
or the estimation of spatial averages from
irregularly spaced data is of considerable
importance in many areas of application, Myers
(1996). But all interpolation algorithms smooth the
data in some sense. For example, if one considers
the empirical distribution of the data, the empirical
distribution of the interpolated values is generally
more compact, in particular the variance is
decreased. Moreover the spatial correlation is
generally decreased, i.e., the interpolated function
is more continuous than the empirical function
determined by the data. These are not always
desirable characteristics. In geostatistics the spatial

data is usually considered to be a non-random
sample from one realization of a random function.
Interpolation corresponds to “filling in “ the rest o
the realization (this will likely be non-unique but
only one realization will be generated). Simulatio
, in contrast corresponds to generating multiple
realizations of the random function. Since the
random function is not completely known, i.e., there
is insufficient information to completely
characterize the random function one can onl
require that certain properties be reproduced. There
are three that usually are considered. First the
spatial correlation should be preserved (in some
sense), the univariate distribution should bg
preserved and the new realization should match the
data values at the data locations. Two of these,
preservation of the spatial correlation and the
univariate distribution have two interpretations. One
is theoretical and one is empirical. We discuss th¢
differences for several commonly used algorithms
and provide some numerical results to illustra
these differences. Because there are differences it
the algorithms the question of equivalence is ¢
important one and is discussed in Myers (1994). We
begin by a brief review of spatial simulation
algorithms.

2. WHAT ARE SPATIAL SIMULATIO
ALGORITHMS?

Let Z(x) denote a random function where ¥
is a point in 1, 2 or 3 space. Both for th
applications and for the derivation of the algorithms
it is necessary to assume some form of stationarity
This may be described in terms of moments or i
terms of distribution functions. The most commo
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gssumption is second order stationarity, i.e.,

(1) E[Z(x)] exists and is constant for all x in
he region of interest

(i) Cov[Z(x+h),Z(x)] exists for all x, x+h in
the region of interest and depends only on h

The second condition then implies that the
ariance is constant, These two conditions do not
ply anything about the univariate distributions or
¢ finite dimensional distributions. For some of the
thms however there is an additional implicit
ption about the (constant) univariate
stribution type and in particular it is common to
issume that P[Z(x) < z] depends on z and is
aussian. This may require a transformation (and
kely then a back transformation).

~ Alternatively it might be assumed that for
y finite number of points u, v,..., w and vector h

BRZw) < z,,....Z(W) s 2,) =

P[Z(u +h) < z,,....,Z(w+h) < z_]

it first two moments exist then they are constant
g the random function will be second order
onary. This stronger assumption is often used in
mnection with the assumption that these joint
Siributions are either Gaussian or LogGaussian.

It is important to note that one does not
grae an entire realization , nor even the
zation restricted to a region in space. The
prithms will only generate the realizations at a
8 aumber of points. While not essential these
sually taken to be on a regular grid. Some
thms are more restrictive than others to the
tnt that they place limitations on the number of
5 0n the grid. Simulation is widely used in both
logy and petroleum to generate inputs for
Wmodels. This may result in scaling problems.
In the geostatistical literature it is common
i¢ the term “conditioning” to refer to the
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requirement that each generated realization match
the data values at data locations but we see that it
might be interpreted in a broader sense. In many
applications only data is known, i.e., there are no
state equations and hence the data is used to (a)
model the univariate distribution , (b)
estimate/model the spatial correlation structure
function and finally (c), to determine the values of
the generated realization at data locations. Note that
this last condition may only be implicit, i.e., the
data locations need not be points on the grid where
simulated values are generated.

3. SPATIAL vs ENSEMBLE

There are two ways to determine whether
the realizations are “conditioned” to the data. One is
by the construction of the algorithm, this will mean
that characteristics are preserved in an average
sense, averaged over all possible realizations. The
second is to use empirical statistics of the separate
realizations or of a set of realizations. Since the total
number of simulated values will be the product of
the number of grid points times the number of
realizations generated, this will likely limit either
grid sizes or the number of realizations. A further
question is whether the characteristics should be
preserved in both fashions or only in one, in the
latter case which one? This distinction is easier to
understand by considering several of the common
algorithms.

Although not considered in this discussion,
the Simulated Annealing algorithm has some
advantages if reproduction- of statistical
characteristics for each realization is a desirable
attribute, see Deutsch (1995) and Deutsch and
Cockerham (1994).

4. THREE ALGORITHMS

A. TURNING BANDS



Consider first the problem of matching the
realization to the data values at data locations. Write
the simulated random function in the form
Z,0) = Z®) + [Z,00) - Zy®)] (1)
If Z(x) is an exact interpolator, e.g., simple or
ordinary kriging, and [Z(x) - Zg(x)] is a mean
zero random function whose spatial correlation
function is the prescribed one then Z (x) is a
random function with the desired characteristics.
This decomposition is analogous to using a
regression equation for prediction. While the choice
of algorithm for simulating [Z,(x) - Z(x)] is not
crucial in this decomposition, some algorithms
allow incorporating the conditioning into the
algorithm. One of the earliest algorithms was
known as Turning Bands, Journel (1974), strictly
speaking it is not a simulation algorithm but rather
it is an algorithm for generating simulations in k-
space by generating multiple simulations in 1-space.
Let X(t) be a random function defined in 1-space
and set

W) = [X(<x,5>)dP(s) (2)

where dP(s) is a probability measure on the sphere,
<x,s> is the inner product of x, s. It is easy to see
that the covariance function of W(x) is given as a
convolution of the covariance of X(t), for k=3 this
is particularly easy to invert. The case of k=2 is
discussed in Booker (1985), Mantoglou and Wilson
(1982. To obtain the algorithm this representation
must be discretized. Let s,,...,s,, are equally spaced
directions and set

W) = Yo m@X(<s;, x>) 3)
where the a's are of the form 1/m®. X(t) can
simulated using a Box-Jenkins Moving Average.
‘Bhere - - are  certaid 3 prepertiesit +.00
characteristics that can be seen imediately, some of
which are a consequence of the discretization. First
of all, the integral is replaced by a finite sum but the
relationship between the covariance of W(x) and the

covariance of X(t) is obtained from the integ
relationship, some adjustments are necessary
ensure that the variance comes out rig
Particularly when k=3, geometry intervenes ¢
places some restrictions on the values of m, i.e.,

maximum number of equally spaced directic
This restriction does not occur when k
Ultimately the simulated value of W(x) (for a fiz
X) is a linear combination of uncorrelated rand
numbers. The Central Limit Theorem implies t
at least in a limit sense that the distribution, ag
for a fixed x, should be approximately Gaussi
Hence it may be desirable that W(x) has a Gauss
distribution then the random numbers are dra
from a Gaussian distribution. Note that t
distributional property will be preserved in
theoretical or ensemble sense. It does not imj
anything about the empirical spatial distribution :
any one realization. Those distributions are clea
affected by the pattern of locations on the grid, f
number of grid locations, the mesh of the gr
Finally because the algorithm is both cpu a
memory intensive, “bands” are used and these w
produce some effects graphically.

B.SEQUENTIAL GAUSSIAN

This algorithm is based on several we
known properties of the multivariate Gaussi
distribution and the Simple Kriging estimat
Recall that the Simple kriging estimator is of
form

Z¥g(x) = m + )., gMZ(x) -m] 4)
= m + (Z-m)C'C,
where

Z[i=l ..... n]kic(xi-x_j) = C(X_Xj) (5)
pEke,n
and the Kriging variance is given by
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- C(0)-C, Clc, (6)

The second form of eq (4) is of course just
the conditional expectation and and eq (6) is just the
conditional variance. At a non-data location then
one simulates a Gaussian distribution whose mean
is given by eq (4) and whose variance is given by eq
- (6). The Z(x ;)’s are the data values. Since the
Simple Kriging estimator is exact the desired
conditioning is incorporated into the algorithm and
‘need not be done separately. The analogy with
using a regression equation for prediction is even
stronger in this case. Note however that there is an
implicit assumption of a multivariate Gaussian
distribution. In practice the algorithm will
sequentially traverse the set of grid points
simulating each in turn and treating previously
simulated values as “data” for the subsequent

univariate distribution and the spatial correlation is
in a theoretical sense. The algorithm does not
ensure that the empirical properties of any one
ealization match those of the model. While one
repeatedly uses a Gaussian distribution to generate
the random numbers, the mean and the variance are
changing from one grid point to another hence
viewed as a data set the generated values need not
be Gaussian. This algorithm has both advantages
and disadvantages. First of all, it is dimension
independent and secondly the sequential nature of
he algorithm reduces memory demands. The user
or the programmer must make choices however that
yill affect the results. While on the average, the
particular sequencing of the grid points will have no
sffect on the simulations the actual application may.
[t would be possible to use a unique neighborhood
dor the Simple Kriging but in practice a moving
neighborhood is used instead, the parameters of this
ieighborhood can significantly affect the results,
1e, the empirical results. As noted above a
multivariate Gaussian distribution is implicit in the
Igorithm and hence transformations may be
essary. Univariate transformations are easy to

conditioning. Note again that the preservation of the
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construct but multivariate transformations that
would be consistent across the number of variables
would be much more difficult. A variation on
Sequential Gaussian uses the Fourier Transform to
remove the spatial dependence, for a discussion of
this approach see Easley, Borgman and Weber
(1991).

C. L-U DECOMPOSITION

Let C; =Cov[Z(x ), Z(x ;)] and set

........................

..........................

and C =LU, the Cholesky decomposition of C.
The let Y be a vector of uncorrelated random
numbers, YU will be a vector of correlated random
numbers. The covariance matrix will be reproduced,
in a theoretical/ensemble sense. Again, if the
random numbers are Gaussian then the resulting
distributions will be Gaussian, for the random
function. Conditioning by the use of Simple Kriging
is easily incorporated by partitioning the matrix C
into blocks, one being the covariances between data
locations, one being the covariances between grid
locations and the other two being covariances
between pairs of locations one from each set.
Because the entire set of grid points is simulated at
one time the size of the matrix C is a restriction.
For ordinary computers, 1000 x 1000 is an upper
bound, Davis (1987a). The square root of C can also
be used and this can be approximated by an
orthogonal polynomial, Davis (1987b). Dietrich and
Newsam (1995). As pointed out in Myers (1989) the
univariate distributions can not be the same in these
two cases even though the same distribution is used
for the random number generator. This algorithm is
easily extended to the vector valued case as shown
in Myers (1989). The use of Ordinary Kriging in
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lieu of Simple Kriging is not easily incorporated.

4, NUMERICAL RESULTS

Numerical results were obtained using a
software package called ISATIS, which was
furnished to the author courtesy of GEOMATH.
The data is a topography i.e., elevation data set that
comes with the software. Figure 1 shows the pattern
of data locations, Figure 2 shows a plot of data
values versus the east-west coordinate and Figure 3
a plot of data values vs the north-south coordinate.
Figure 2 was interpreted as indicating a non-
stationarity. A linear trend surface was fitted to the
data and residuals computed. Figure 4 shows the
histogram of the data values and Figure 5 the
histogram of the residuals. Figures 6 and 7 show the
sample variograms (all directional) for the original
data and the residuals. Only the residuals were used
for later computations. Three grids were generated
overlaying the region in Figure 1; a 5 x 5 grid, For
the Turning Bands simulations, 15 directions were
used. For the conditioning, i.e., the kriging, an
isotropic variogram was used with a search
neighborhood radius of 200 m, requiring a
minimum of one data location inside a
neighborhood and using a maximum of 10. Multiple
realizations were generated on each grid using the
same variogram model and using all three
algorithms. The multiple realizations were obtained
by updating the starting seed for the random
number generator.

Statistics

Multiple statistics were computed for each
realization or each set of realizations. First a
(spatial) histogram was computed to compare with
the distribution type stipulated in the algorithm, for
fixed grid size histograms were compared between
realizations to determine the extent to which the
histogram shape remains constant. Although only a
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small number of realizations were generated,
histograms across realizations can be computed for
each grid point again to compare with the stipulated
model and also to verify stationarity in the |
algorithm. There was a marked difference between
algorithms when reviewing the histograms for
separate realizations, the histograms for the Turning
Bands simulations were much more compact than
for the Sequential Gaussian.

Sample (spatial) variograms were computed
for each realization for each grid size and as might
be expect some effect of grid mesh is seen both
because of the discrepancy in the numbe of grid
points and also in the minimum interlocation
distances. This relates in part to the relationship -
between the range of the variogram and the grid
mesh as well as the radius of the search
neighborhood used in kriging. The sample
variograms for the Turning Bands simulations were
less like the stipulated model than for the Sequential
Gaussian simulations.

Another way of comparing realizations is to
compute sample cross-variograms for a pair of
realizations. This provides a characterization of how
two realizations differ “at a distance”. The cross-
variograms for pairs of Sequential Gaussian
simulated realizations had a more pronounced sill
than for the those generated using the Turning
Bands Algorithm. '

5. SUMMARY

The numerical results confirm what might
be expected, namely that the statistical properties of
separate realizations can differ significantly from
those of the model used in the algorithm. In addition
the degree of reproduction of these statistical
properties varies from one algorithm to another. The -
distinction between spatial and ensemble statistics
for simulations is one of the reasons for the interest
in another algorithm (not implemented in ISATIS)
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called Simulated Annealing. In this algorithm both
the univariate empirical distribution and the spatial
correlation, e.g., the sample variogram, are forced
to match or be very close to the model. The
algorithm involves an iterative process to achieve
this. :
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